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Abstract. Motivated by a property of Dedekid domain, L. Levy (Pacific J.

Math. 18(1), (1966), 149-153.) characterized commutative noetherian rings
whose proper homomorphic images are self-injective. The purpose of this paper

is to characterize commutative noetherian rings whose proper homomorphic

images are almost self-injective, a property that holds for a larger class of rings,
including serial rings.

Introduction4

The following theorem was proved by L. Levy in [6].5

Theorem 1. Let R be a commutative noetherian ring. Then every proper homo-6

morphic image of R is self-injective if and only if R is one of the following types7

of rings (I) Principal ideal artinian ring, (II) Dedekind domain, (III) Local ring8

whose maximal ideal M has composition length 2 and satisfies M2 = 0.9

The main result of our paper is the following theorem:10

Theorem 2. Let R be a commutative noetherian ring. Then every proper homo-11

morphic image of R is almost self-injective if and only if R is a direct sum of rings12

of the following three types of rings (not necessarilly all):13

(I) Serial ring, (II) Dedekind domain, (III) Local ring with the maximal ideal14

M = A ⊕ B = Soc(R). Furthermore, in each case the Krull dimension is bounded15

by 2.16

The concept of almost self-injective ring was introduced by Baba in [2] and17

studied, among others, by Harada and Tozaki [5] in connection with serial rings18

and almost quasi-Frobenious rings.19

A commutative ring R is almost self-injective, if for any R-homomorphism f :20

I −→ R, I an ideal of R, either f extends to a homomorphism g : R −→ R, or21

there exists a decomposition R = R1 ⊕ R2 and a homomorphism h : R −→ R1,22

where R1 6= 0, such that hf(x) = π(x) for all x ∈ I, π is the usual projection of R23

onto R1. In other words one of the following two diagrams can be completed:24

0 −→ I
i−→ R 0 −→ I

i−→ R = R1 ⊕R225

(1) f ↓ ↙ g (2) f ↓ ↓ π26

R R
h−→ R127

and we will sometimes say that the map f can be ”completed” (by g or h).28

Indeed the concept of almost injectivity has defined in a similar way for any29

module over a ring with identity (not necessarily commutative, cf. [2], [5]) .30
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R is called a uniserial ring or a valuation ring if each pair of ideals (equivalently1

principal ideals) can be compared by the inclusion relation. A ring R is called serial2

if it is a direct sum of uniserial rings.3

All rings considered in this paper are commutative and have identity different4

from zero.5

1. Main result6

Let us first mention that an almost self-injective ring which is indecomposable7

must be uniform. Indeed such a ring has no idempotents and hence it is π-injective8

(=quasi-continuous) (cf. Lemma 1, [1]). Moreover, an almost self-injective noe-9

therian ring is a finite direct sum of uniform ideals (cf. Proposition 1.10 in [7]).10

It is easy to prove that the direct sum of almost self-injective rings is almost11

self-injective.12

We start by showing that a finite direct sum of valuation rings is such that every13

homomorphic image is almost self-injective.14

Lemma 3. Every homomorphic image of a finite direct sum of noetherian valuation15

rings is almost self-injective.16

Proof. Let us first consider the case of a single valuation ring. It is obvious that17

each homomorphic image of a valuation ring is still a valuation ring. So, it is enough18

to show that a valuation ring is an almost self-injective ring. Notice also that a19

noetherian valuation ring is in fact a local PID and hence also indecomposable.20

Let f : aR −→ R be an R-module homomorphism. Let f(a) = b. Consider21

the case when aR ⊆ bR. Then there exists c ∈ R such that a = bc. We define22

h ∈ EndR(R) by h(1) = c. Then h(f(ar)) = h(br) = brc = ar, for any r ∈ R and23

thus h ◦ f = IdaR. On the other hand if there exists d ∈ R such that b = ad, we24

define g ∈ EndR(R) by g(1) = d. Then g(a) = ag(1) = ad = b = f(a). Thus in25

this case g extends f to R. The proof is easily completed since a finite direct sums26

of almost self-injective rings is almost self-injective.27

�28

Lemma 4. In an almost self-injective indecomposable ring if two elements a, b ∈ R29

are such that ax = 0 implies bx = 0, then either Ra ⊂ Rb or Rb ⊂ Ra. In30

particular, if R is a domain then it is a valuation domain.31

Proof. Since the map Ra→ Rb sending a to b is well defined and can be completed32

in one of the two ways as given in the definition of almost self-injectivity. These33

two different ways lead to the fact that either a divides b or b divides a. �34

Our next proposition will be useful in proving our main result.35

Proposition 5. Let R be a commutative noetherian ring having the property that36

every proper homomorphic image is almost self-injective. Then the following hold:37

(1) If R is a domain then it is a Dedekind domain and the Krull dimension of38

R is 1. Moreover, if R is istelf almost self-injective then R is a valuation39

ring with a unique nonzero prime ideal (= maximal ideal) and all the ideals40

are power of this prime ideal.41

(2) If R is not a domain, there exists a finite number of maximal ideals and42

the Krull dimension of R is bounded by 2.43
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Proof. (1) We first claim that there are no ideals between M and M2, where M is1

a maximal ideal. Since R is a domain, M2 6= 0 and the ring S = R/M2 is a local2

almost self-injective ring. If x, y are nonzero elements in M/M2 then x and y have3

the same annihilator, namely M/M2. This implies that xS ∼= yS. Since S is almost4

self-injective the map ϕ : xS −→ S given by ϕ(x) = y can be completed and hence5

either there exists u ∈ S such that y = xu or there exists v ∈ S such that x = yv.6

Since the square of M/M2 in S = R/M2 is zero, the elements u, v ∈ S cannot7

belong to M/M2. Thus u, v are invertible. This leads to the fact that for every8

pair of elements x, y ∈ S we have Sx = Sy. This yields the claim. We can then use9

a theorem of Cohen (cf. [3]) that a commutative noetherian domain satisfying the10

property that there are no ideals between a maximal ideal M and its square must11

be a Dedekind domain.12

If the ring R is itself almost self-injective Lemma 4 above shows that the ring R13

is a valuation ring. Since in a Dedekind domain every ideal is a product of prime14

ideals and every nonzero prime ideal is maximal the last statement follows.15

(2) It is well known that a commutative noetherian ring has only a finite number16

of minimal prime ideals. If P is such a minimal prime ideal, then R/P is a domain17

and Lemma 4 shows that it is a valuation domain and hence a local ring. In18

particular, there is a unique maximal ideal containing P . This shows that the19

number of maximal ideals in R is fewer then the number of minimal prime ideals.20

Moreover the above statement (1) shows that every ideal in R/P is a power of the21

maximal ideal. In particular, the Krull dimension of R is bounded by 2.22

�23

Before proving the main theorem we prove the following crucial result for a24

local ring satisfying our property i.e. every proper homomorphic image is almost25

self-injective.26

Lemma 6. Let R be a commutative local ring with maximal ideal M such that each27

proper homomorohic image is almost self-injective. Then either R is a valuation28

ring or M2 = 0 with composition length of M equals to 2. Indeed, every proper29

homomorphic image is a valuation ring in each case.30

Proof. We claim that every ideal is either minimal or essential. Suppose there exist31

nozero ideals I and K such that I is not minimal and I ∩K = 0. Then for every32

nonzero ideal C properly contained in I, (I/C) ∩ (K + C)/C = 0. Since R is33

local and C 6= 0, R/C is local and almost self-injective, and hence uniform. In34

particular, I/C is essential, a contradiction. This proves the claim. Since every35

proper homomorphic image of R is uniform, udim(R) ≤ 2. In particular, the socle36

of R is a direct sum of at most two minimal ideals. We divide the proof in three37

cases.38

Let the socle of R be zero. Then every ideal of R is essential. Let I and K be39

two nonzero ideals. Since R/(I ∩K) is uniform and I
I∩K ∩

K
I∩K = 0, it follows that40

I ⊆ K or K ⊆ I. Thus R is a valuation ring.41

If the socle or R consists of a single minimal ideal, then all ideals are essential42

and the proof comes from the above case.43

Finally, let soc(R) = A ⊕ B where A and B are minimal ideals. Let M be the44

unique maximal ideal. Then MSoc(R) = 0. In particular, for any x ∈ M we have45

that ann(x) 6= 0 and Rx ∼= R/ann(x) is uniform. This means that Rx cannot46

contain the Soc(R) = A ⊕ B and hence Rx cannot be essential. So Rx must be47
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minimal. This shows that M ⊆ Soc(R) and so M = Soc(R). Clearly, M2 = 0, as1

desired.2

Furthermore every proper homomorphic image of R is clearly a valuation ring,3

completing the proof. �4

We now prove the main Theorem 2 as stated in the introduction.5

Proof. We denote the prime radical of R by N .6

Suppose first that N 6= 0. Then all homomorphic images of R/N are almost7

self-injective. Invoking the result (8.2, p.66, [4]) , we get R/N = ⊕l
i=1eiR/eiN8

where {e1 +N ,...,ek +N} is an orthogonal family of idempotents such that 1+N =9

(e1 + N) + ... + (ek + N). Since N is nilpotent, without loss of generality we can10

assume that ei are idempotents in R (cf. Theorem 21.28 p.319 [8]), and thus the11

decomposition of R/N can be lifted to R = ⊕l
i=1eiR say.12

If l > 1, then each eiR is uniform almost selfinjective and hence a local ring by13

Theorem 5 in [1]. In this case Lemma 6 finishes the proof. Now suppose l = 1. As14

above we conclude that R/N is a local ring, this implies R that R is local. The15

conclusion follows by the above lemma 6. This completes the proof in the case16

when N 6= 0.17

Suppose now that N = 0. Then R is a semiprime noetherian ring. We prove18

the result by induction on the uniform dimension of R. If u.dim(R) = 1, then R is19

domain and hence a Dedekind domain by the Lemma 420

Let us suppose that the result holds for commutative noetherian rings with21

udim(R) < n, for some n > 1 We consider two cases. First suppose, there exists an22

non-essential maximal ideal M . Then R = M ⊕K for some nonzero ideal K. Then23

by the chinese remainder theorem R ∼= R/M × R/K, where R/M is a field. Since24

udim(R/K) < udim(R), the induction hypothesis gives the desired conclusion.25

If on the other hand every maximal ideal is essential, then according to Propo-26

sition 5 the minimal prime ideals are also essential. Since there are only a finite27

number of minimal prime ideals the nilpotent radical N is essential, a contradiction28

because R is semiprime. This proves the ”if” part of the theorem..29

”only if part”. Let us now show that if a ring R belongs to one of the three30

families given in the statement of the main theorem then every proper homomorphic31

image of R is almost self-injective. If R is a Dedekind domain then it is wellknown32

that every proper image of R is self injective. For the remaining two types, refer to33

Lemmas 6 and 3. �34

We may compare our result with the one obtained by L. Levy in [6]. Firstly, we35

remark that a principal ideal artinian ring is also a valuation ring. The example36

given below shows that there exists a family of rings of a type obtained by us which37

does not fall in the class of rings obtained by Levy.38

Example 7. Let k be a field and consider the product R = k[[X]] × k[[Y ]]. This39

ring is not a domain. It is neither a local ring nor artinian but it is the product of40

two valuation domains and hence satisfies our property. So this ring doesn’t belong41

to the family obtained by Levy but belongs to the third family we obtained. In other42

words this ring is restricted almost self-injective but not restricted self-injective.43
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